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SYNOPSIS 

Transient-state theory recently proposed has enabled us to describe the chain length de- 
pendence of viscosity of polymeric melts from the Rouse to entangling regimes by the single 
equation which also takes the factor of temperature into account. On the basis of this 
theory, this contribution attempts to treat the effect of temperature on viscosity and provides 
a molecular explanation to the coefficients of M-dependence in the WLF equation, obtaining 
the activation energy AEo and elastic interaction parameter a for example selected. A 
reinterpretation from a molecular viewpoint directly leads to the common observation of 
the M-dependence of the glass transition temperature. The mathematical expressions are 
developed for diffusion coefficient D,, showing the scaling behavior for special cases as M-’ 
and M-2.4 below and above the entanglement coupling mass Me, respectively. Any deviation 
from the scaling can be accounted by the quantum confinement effect a. The terminal 
relaxation time T~ behaves in the same way as 7 above the onset of entanglement. It is 
found that both D, and rD scale on temperature in the way analogous to the WLF correlation. 
In addition, an expression for Young’s modulus is presented by a molecular deduction. The 
predictions are in consistence with existing experimental data via the adjustment of a 
which can correlate more findings difficult to be accommodated into conventional theories. 
0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

We have initiated a new approach to handle the 
transport problem of glass-forming polymeric fluids 
in the framework of molecular physics by consid- 
ering that the transportation property of a chain is 
determined by two competent factors, i.e., the spec- 
trum of phonons or conformons of the chain itself 
and its interaction with the neighboring medium or 
so-called “effect of quantum constraints.”’ The ef- 
fect of the molecular weight M and temperature T 
enters naturally into the master equations for vis- 
cosity and diffusivity as a whole. The expression of 
diffusivity D,(M,  T )  for a whole chain derived in 
the precedent work is given by 
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where A is a proportionality, 0, = h w , / k B ,  w, is the 
upper limit of the phonon angular frequency, kB is 
Boltzmann’s constant, AEo is the activation energy, 
h is the Planck constant divided by 27r, T is the 
temperature, c, is the velocity of sound, M is the 
molecular weight, M,  is the characteristic molecular 
weight of a segment relevant to phonons or the en- 
tangling molecular weight of a transient network, a 
is an important parameter related to the elasticity 
of the chain. It is worthwhile to emphasize that the 
diffusivity D, ( M ,  T )  describe the mobility of the 
whole chain and it should be made different from 
that of a subchain, in general. 
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Correspondingly we have the master equation for 
viscosity of glass forming polymers 

d M ,  T)  = CoTP2M3 exp(AEo/kBT) 

Here Co = 2 n 2 K o c , ” h 3 / A k ~ M ~ ,  KO is a structural 
factor, usually taken independent of M and T. For 
a large term of 

MB, 
M,T ’ 

eq. (2 )  can be written as 

q(M, T )  = C&T-2M3e~p(AEo/kBT) 

where C &  = 0.4160c0 and the product of McT/8, 
defines the entangled molecular weight Me1. 

The theoretical analysis and experimental fitting 
show convincingly the soundness of our reasoning 
over the whole range of the molecular weight in- 
cluding the Rouse and entangled regimes. In partic- 
ular, the typical experimental data selected are well 
interpreted for the first time by the single master 
equation obtained, i.e., eq. (2 ) .  Moreover, the well- 
known 3.4-power law was found valid for a broad 
but limited spectrum of M. In this communication 
we revisit the classic WLF equati~n~,‘’ ,’~ in a new 
context and touch the problems like diffusion 
coefficient 3 9 4 ~ 1 2  and terminal relaxation time3,4,12 
based on this new picture. An expression for Young’s 
modulus of rubber elasticity5 is also reached by an 
appropriate reasoning without invoking the affine 
assumption. Case study is carried out to show pri- 
mary applicability of the new model to experiments. 

The WLF Equation Revisited 

The excitation of the motion of a polymeric chain 
shows a strong dependence on temperature. Below 
a certain temperature the bosons, conformons, are 
frozen-in and a displacive motion of the chain is 
forbidden. Their “absolute zero temperature” shifts 

upward to a new value Tg. Thus we may substitute 
T in the equation (3 )  by T - Tg and are led to 

Coo = Cg0M3. In the following derivation, only the 
temperature in the equation is viewed as variable 
and the molecular weight M treated as parameter. 
Choosing a reference temperature To, the temper- 
ature shifting factor aT reads 

+ (AEo - - h - To - Tg 
= 2 log- 

T -  Tg 2.303kB 

Simultaneously, it is a general phenomenon that the 
viscosity of polymers as a function of T empirically 
obeys the WLF ( Williams-Landel-Ferry ) law’,’’ 

where C, and C2 are empirical constants and can be 
found experimentally. Comparing both eq. (5 )  and 
(6)  we find 

In the above treatment, we have ignored the effect 
of the denominator in eq. (8) on the term ( T - To) 
in the denominator of eq. (6)  for I T - Tot < To 
- Tg, usually valid for experimental investigation 
and expand the logarithmic term by 

T - To 
2.303( T - T,) N (9)  

To - Tg log- - - 
T - Tg 

for T - Tg > IT - ToI. In short, eq. (5 )  can be 
approximated to eq. (6)  supplemented by eq. ( 7 )  
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and (8) describing the constants. Therefore it may 
be concluded that the WLF equation is a natural 
result of the master equation ( 4 )  for viscosity. 

M-Dependence of C, and C,; Activation 
Barrier A€,, 

Now we discuss the coefficients C1 and C2 as a func- 
tion of M because of the availability of relevant ex- 
perimental data6 to shed more light on the essence 
of the dynamics in polymer melts. In the common 
scheme man takes the energetic barrier constant and 
independent of M. In our reasoning, we have pro- 
posed that there is an extra term from quantum 
confinement, contributing to the activation of the 
chain. Tg keeps constant. Then the constant C, in 
the WLF equation is, from eq. ( 7 ) ,  subject to 

This equation states an explicit relationship between 
the constant C, and the molecular weight M. Thus 
it is possible to examine the relation in more detail 
and get information on the activation energy A E O  
and elastic response a ,  two important parameters 
determining the dynamic behavior of a system. First 
the plotting of C ,  - MP1I2 should show a linear 

3.4 

3.2 

3,O 

correlation between C1 and M-’/’. In fact, the ex- 
periment on poly (butadiene ) selected as example 
verifies this prediction ( refer to Figure 1 ) . Then we 
get AEo and a from the slope and intercept of the 
linear correlation 

BAEo = 3.61 and f haB = 30.27 (10a) 

If we introduce the formal expression of B and ap- 
proximate ( T o  - T,) by (298 - 175) K used in the 
experiment or the value of 162 K from the simulation 
of C, dependent on M (see below), it is found 

AE, = 8.5 - 11.3 kJ/mol ( lob)  

a value reasonable for a subchain to be activated to 
change its conformation and comparable to that of 
a recent measurement by NMR done on deuterated 
poly (butadiene ) in solutions and other reports, 
although some subtlety should be made to differ- 
entiate the difference as a result of the experimental 
conditions varied. 

In the previous analysis we have obtained the 
curves of the master equation fit to the viscosity 
data of poly( butadiene) reported6 

17 = 10-2.0Me-23~5/G( M < Me). (1Oc) 

C. = 3.61 - 30.3M-”2 

0.000 0,005 0,010 0,015 0,020 0,025 0,030 0,035 

M-112 

Figure 1 Molecular dependence of the coefficient C1 in the WLF equation. The experi- 
mental data points6 are correlated well to eq. (lo), C, = 3.61 - 30.3M-’”, giving the activation 
energy and interaction parameter a. 
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The prefactors in the natural exponents are direct 
related to the elastic parameter a ,  

C,'=1/162.6 t li(l9934 4-588901.8M 

m m  
I =  

I I I I I I 

1 tia/kBT = 196.2(M > M e ) ;  

$ ha/kBT = 23.5(M < Me). (10d) 

It is not difficult to estimate that the magnitudes 
obtained from the analysis of both q and C1 in light 
of M are of the same order for a.  This kind of anal- 
ysis demonstrates the self-consistence of the theory 
in itself and supplies information on the elastic in- 
teraction of polymers. 

Experimentally substantiated, eq. ( 8) forecasts 
that C2 increases with M. Actually, eq. (8) can be 
rewritten in the form 

From the plot of the measured data6 of C;' against 
M - ' / 2  as shown in Figure 2, the distribution is ex- 
pectedly described by eq. (8a) .  The fitting produces 
an acceptable value of the apparent (To - T,) of 
162.6 K. In sum, we are able to present a (semi-) 
quantitative interpretation of the observed M-de- 
pendence of the constants Cl and C, in the WLF 
equation on the molecular model proposed. 

M-Dependence of TB 

In this section we reconsider the experimental ob- 
servation of the M-dependence of T: and forward 
a new explanation of the activation barrier to get 
an expression unifying Tg and M. 

Returning to the traditional scheme, it is assumed 
that the term of activation energy, designated as 
AE;, is independent of molecular weight M. Now 
Tg becomes molecular-weight dependent. We call 
this kind of T, an apparent glass transition tem- 
perature T: and read eq. (7) in 

Equating both eq. (10) and (ll), the apparent glass 
transition temperature T,* dependent on M assumes 
the form of 

where Bo = ~;/[2.303kBBA&], a. = ha/2AEo. 
When 
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eq. (12b) is simplified to 

where TZm = To - Bo as the extrapolation value 
at  an infinite molecular weight M and B1 
= AE; ha/4.606k&AEi. This equation is slightly 
different from the classic formulation5 

T I  K Tg* = - - 
M '  

K is a constant. The experimental data are plotted 
in terms of Tg via M-'/' and M-' in Figure 3(a) and 
3(b), separately. It is found that the experimental 
data can be correlated satisfactorily by the both 
equations. However, the constants in the equations 
show a clearer physical meaning in our case. 

To sum up, the WLF scaling law is derived direct 
from the more fundamental principle invoked by us 
and its constants are quantitatively expounded. The 
molecular weight dependence of the glass transition 
temperature is interpreted as a result of quantum 
confining effect and their relation can be deduced 
from the same principle. 

Diffusion Coefficient 

One interesting topic in polymer physics is con- 
cerned on the diffusion coefficient of a polymeric 
ensemble dependent on the chain length. The coef- 
ficient is termed as D,, purposely differentiated from 
D, used before. We postulate further that experi- 
ments on diffusion measure the local mobility of a 
chain. This local motion involves an individual seg- 
ment of a length M,. In other words, the diffusion 
coefficient D, discussed here is in general different 
from the cooperative diffusion coefficient D, of a 
whole chain as emphasized in the previous work (re- 
fer to eq. (1) in this paper). Nonetheless they can 
be related to each other by an elegant equation. In 
the remaining part of this section, we will derive 
such a relation between D, and D,. To simplify the 
discussion the molecular length L is divided into 
two regimes, short and long, the onset of entangle- 
ment coupling acting as division line. First we con- 
sider the case of L longer than L, (or equivalently, 
M > Me). When a chain is under a steady shear field 
of a rate +, it experiences a force F, (the small index 

c is used as previously to emphasize the force being 
exerted on the whole chain) is 

and so the force F, on the subchain M, is 

9, is the viscosity of the subchain. Obviously one 
chain of molecular weight M contains a number M /  
M,  of subchains of interest. Then F, is M / M ,  times 
larger than F,. Thus the viscosity 9, relevant to a 
single segment is the times of M/M,  smaller than 9 
and the equation below is valid, 

MC 
M 9s = - 9- 

Using the Einstein relation inversely, 

we may relate D, to D, and 9 by inserting the equa- 
tions (l), (2), (16) into eq. (17), 

M 
MC 

D, = - D,, 

and (19) 

or 

To get an insight into the mathematical formulas 
just obtained, now we look at some special aspects 
of them. As 9 may be approximated by a power law 

(go is constant) at the high side of the molecular 
weight Mas predicted from the analysis previously,' 
it is evident from eq. (18) that the diffusion constant 
D, observes a relation 
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T, = 175.5 - 344.1M-'" 
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Figure 3 Molecular dependence of the glass transition temperature Tg (data from ref. 
6) .  (a) Theoretical calculation of the present model, T8 = 175.5 - 344.1M-''2(K); (b) Fitting 
of the classic relation, T, = 174.6 - 12631.6M-'(K). 

D, = Ds,JU-(o(-l). (22) That is to say, the diffusion coefficient D, decreases 
quickly with molecular weight M scaled by a power 

Dso is constant. This equation tells us that D, follows 
-(a - 1)-power law of M as the viscosity obeys the 
a-power scaling. If Q! = 3.4, the diffusion coefficient 
D, arrives at  a form 

of -2.4. We may also get some intuitive impression 
on the mobility of a chain of high molecular weight. 
If the prefactor Dso is taken to be at  the order lop8 - lo-'' m2/s of monomeric diffusion coefficient with 
a mass about 100 in liquid state, the magnitude of - 
polymeric diffusion coefficient D, is estimated to be 

D, = DsJk-2.4. (23) in the range of lo-'' - m2/s for the molecular 
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Figure 4 Molecular dependence of the diffusion constant 
for poly(i~oprene)~ fit to different models. Real curve: theo- 
retical simulation of our model, log 9 = -4.13 - 2 log M + 
13.32M-"' and the inset showing the corresponding linear 
regression, log 9 = -3.62 - 2.10 log M dotted line: an ap- 
parent linear regression, log 9 = -3.68 - 2.08 log M, dashed 
curve: the reptation model, log 9 = -4.04 - 2 log M. 

weight in the order of lo3 - lo5. So the motion of 
a polymeric chain is really a very slow process. 

As a primary test of the validity of eq. (20), we 
reanalyze the data on diffusion obtained by Fleischer 
and A ~ p e l . ~  Eq. (20) is reduced to 

for simplicity. Here al = iha/kBz Dso and al are in- 
dependent of M. Figure 4 displays three types of fitting 
for the experimental data of poly(isoprene)': result of 
the reptation model (scaling of M-'), apparent linear 
regression and theoretical calculation by the present 
model. Generally speaking, the data points are excel- 
lently matched by all the three curves. The theoretical 
result of our model is almost coincident with that of 
the apparent linear regression and both of them seem 
to demonstrate a slightly better correlation. Further- 
more, the data calculated from our model displays a 
perfect linearity (refer the inset in Figure 4) and the 
prefactor before the term M-1/2 is as expected in the 

same order of that obtained for poly(butadiene) as 
analyzed above (refer to the relevant values in eq. 
(lOa), (1Oc) and (IOd)), showing similar behavior in 
the elastic interaction of them. The exact expressions 
regressed are listed in the figure caption of Figure 4 
where the slopes read -2, -2.08 and -2.10 for the 
reptation scheme, apparent linear plot and our model, 
respectively. Though the difference between them is 
not conspicuous, however, it is still detectable and the 
latter two show a clearer tendency of deviation from 
the first. This kind of deviation has been observed by 
many experimentalists and is obviously compatible 
with our scheme. A similar conclusion is reached for 
the diffusion constant of poly(butadiene) measured by 
the same authorsg and the result will be presented in 
combination with the related analysis of viscosity to 
display the effect of temperature on the exponential 
indices (see the discussion below). 

Then we treat the case of short chain M in the 
Rouse regime. In this regime the motion of a chain 
as a whole is equivalent to its subchain due to the 
disappearance of entangling effect and thus we do 
not need to distinguish between the whole chain and 
its subchain. So the force F, exerted on the chain 
and F, on the subchain can be made equal, or F, 
= F,, under steady flow. Converted in the language 
of viscosity, it reads q = 7,. Reproducing here the 
result of q below M, obtained in the precedent work' 

where A2 = 47r2cah3Ko/Ak~McO~, and applying the 
Einstein relation once more, we have 

1 

A. = Ak$McO~/4a2c~ft3. As expected it is the same as 
D, obtained previously' for M < Me. Evidently, D, 
of short chain scales as M-' if the influence of the 
exponential part containing M is negligible, 

The prediction of eq. (25a) is well experimentally 
founded for conventional polymers and any devia- 
tion from it might be elucidated by the part ignored. 

We briefly make two commends to stress the role 
of the term 
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playing on the deviation from the conventional pre- 
dictions. Simply to ignore the term, our theory nat- 
urally predicts the behavior of the Rouse and rep- 
tation chains. It is self-evident that the term con- 
tains two parameters T and a, in addition to the 
variable M in the part 

1 a 
Shk,nrM 

and we discuss their functions separately. (1) Owing 
to the adjustable parameter a appearing in the ex- 
ponents of the relevant formulations like eq. (20) 
and (25) this theory explains a very broad spectrum 
of phenomena observed by resetting the value of a, 
even its sign (this point needs other investigation) 
when necessary. For instance, the stronger M-depen- 
dence of viscosity than 3.4-power is in the reach of 
our model.” Detailed analysis on this subject is future 
work. (2) The influence of temperature (in connection 
with a and the range of M interested) on the magnitude 
of the power in the behavior of M-dependence of the 
dynamic quantities like D, and r]  is reflected through 
varying the effective value of a in 

Taking the case of diffusion of poly(isoprene) ana- 
lyzed above as example, it should show a stronger M- 
dependence at a lower temperature instead of M-2.10‘8’ 
in reality obtained at  a higher temperature (373 K) 
which smears out the effect by diminishing the pre- 
factor al in eq. (2Oa). A quantitative comparison of 
the results of D, and r]  is underway for poly(butadiene) 
and the tendency is seemingly in the right direction. 
Qualitatively, an increase in temperature should re- 
duce the impact of the term on the indices of M- 
dependence, which will approach the values predicted 
from the Rouse model and the reptation or polymer 
mode coupling approaches at a very high temperature 
and the effect of the quantum constraints on the 
chain mobility is eliminated. A carefully prepared 
measurement of the same system at different tem- 
peratures should be able to detect such kind of the 
effect resulting from the confinement. The synergetic 
interaction of both T and a can also be taken into 
consideration. To get a better intuition, Figure 5 dis- 
plays a qualitative comparison of the effect of T and 
a on the degree of D, relying on M, separately. It is 

Q - 

logM 

Figure 5 Schematic diagram showing the tendency of 
the temperature T and elastic interacting parameter a on 
the molecular dependence of diffusion constant in normal 
cases. (a) TI < T2 at constant a; (b) a, < a2 at constant T. 
Dashed lines indicating the conventional predictions. At 
the stages of high molecular weight, the real lines develop 
towards the conventional values in the slopes (not shown 
in the figure). 

worthy to note that the effect becomes weak in the 
range of high molecular weight, namely, it can be 
disregarded at the stage of large M. The above ratio- 
nalization has implicitly assumed a non-zero a. 

Along the same line of reasoning applied to vis- 
cosity, we analyze the effect of temperature on the 
diffusion coefficient D,. We still take a high molec- 
ular weight as example, then from eq. (19) and (3) 
there is 

where Col = MKokB/McCm. As argued above, the ex- 
citation relevant to the motion of a diffusing segment 
is frozen-in below Tg while the thermal fluctuation 
plays a role only above Tg, resulting in a shift of the 
“effective absolute temperature” from T to T - Tr 
The equation (24) reads now in a modified form, 
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D, = CO'(T - T,)3 

Defining a shifting factor a: as a function of tem- 
perature 

we deduce a scaling relation for diffusion, analogous 
to the WLF equation, 

where 

1 1 
(AEo - - A L, (30a) 

2 v i i  
cp = 

2.303kB( To - T,) 

This scaling relation differs from the equation ( 6 )  
in sign and the second constant. The opposite signs 
in the both equations reflect the opposite tendency 
in D, and q as a result of change in temperature. 
The constants C p  and C f  are dependent on the mo- 
lecular weight M and glass transition temperature 
T,, also on the reference temperature To as well. At  
this point, it may be noted that the selection of To 
influences the correlation of the experimental data. 
For a fixed system C? and C t  are constants. 

Terminal Relaxation Time T~ and 
Young's Modulus 

The relaxation time rD is another important quan- 
tity indexing the dynamics of a polymeric system 
and may be related to the other quantities discussed 
above. From the phenomenological theory, 7 D  is 
connected to the viscosity through the steady-state 
compliance J8, 

Experiments evidence a constant JS in the entan- 
gling regime. Consequently rl) scales with the mo- 
lecular weight Mas t. It is interesting to notice that 

as t scales as M.4, rD observes the same behavior, 
only differing in the prefactors, 

Consequently, the inconsistency between experiments 
and other models disappears automatically in our the- 
ory. And also rD has a strong dependence on temper- 
ature and the WLF law is in principle applicable. The 
exact expression for it will be given later. 

Eq. (31) can be derived from a molecular pointview 
by starting from the fundamental principle presumed 
in the previous work' and the reasoning above. For a 
high molecular weight, the conformation of a chain 
can be well described by the random walk model." 
The radius of gyration may be given by 

1 M  
6 mo 

(R:) = - Ca - 1' 

1 
6 

= - C,NP, 

(334 

where N is the number of the repeating units a chain 
contains and equals to M/mo, m, and 1 is the mass 
and length of the repeating unit, C, is called the 
characteristic ratio, serving as a measure of the effect 
of short-range interaction, defined by 

where ni is the number of the ith-kind bond of length 
1, and (?)o is the unperturbed mean-square end-bend 
distance. A chain takes a random flight and resumes a 
new positionby going over a distanceof (R:)'l2. This 
distance characterizes the critical state that there is 
just no overlapping between the mass centers of the 
old chain and the renewed. In other words, the memory 
of the original conformation message is completely lost 
after the chain has blindly walked over the character- 
istic distanceof (R;)l/'. The interval of time ellipsed 
corresponds to rD. We are led to 

(If we apply the relation of self-diffusion 

1 
t-a 6 t  

DG = lim - ([RG(t) - RC(O)]'), 

they differ in a factor of 3.) Setting eq. (19) and (33) 
into eq. (34), we obtain the following expression, 
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1 MC 
1 2K0kB T mo 

c, - 127. - - (35) 

All the numerical prefactors before 7 can be taken 
constant referring to M. A direct comparison of eq. 
(31) and (35) immediately reaches an interesting result 

1 Mc 
12KokB T mo 

J:  = c, - 12. 

Undoubtedly, JI is molecular-weight independent. 
The polymer fluids will become soft as it cools and 
hard as we crosslink it by shortening the character- 
istic length of a typical segment. The inverse of J:  
is called the elastic modulus E 

E = (J:)-'. (374 

Making use of eq. (36), it appears as 

12 Komo kn T E=-------- 
C,12 Mc . 

It is clear that E is approportional to temperature 
T and depends inversely on the typical segment 
length Mc, relevant to the entangled statistical seg- 
ment length Me. To let p be 

12Komo 
C,12 ' 

eq. (37b) is reformulated as 

If we explain the coefficient p in terms of the density 
of the transient network, eq. (37c) has the exact form 
as expected from the rubber theory." Thus we re- 
trieve the elastic modulus of a transient network 
from the master equation, without introducing the 
concept of affine deformation of the network. 

Recalling eq. (3), the relaxation time 7 D  expres- 
sible in 

T D  = 3.46 X 10-2C, ~ Mc l2C0(T - TJ3M3 
K&BmO 

at a fixed high molecular weight M and scaled on 
temperature by a shift factor a$ of 7D(M, T,  T,)/ 
TD(M, To, T,) in a form, analogous to the WLF law, 

where C, and C2 obey 

_ .  
l a  

A E - - h -  
2 G  

Finally it is of necessity to point out that 7, D, and 
7 D  may also display a scaling behavior of temperature 
dependence in the regime of short chain, similar to 
the WLF equation but with modified constants. 

The author expresses his deep gratitude to Prof. G .  Wegner 
for his generous support in Mainz. 
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